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ABSTRACT
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The problem is to search for the t largest observations in

& random sample of size n by asking binary type questions of the

-

people (or items) in the sample without collecting any exact data

vhatever. The unordered and ordered cases are both considered; in
the latter case the .complete ranking is of special interest. Two

. different criteria of optimality are considered: (1) to minimize

- the expected number of quéstions required and (2) to maximize the
probability of terminating the search in at most r questions for
specified r. Optimal procedures are found and compared and in some
sense the solutions for these two criteria are close to each other.

H . The analysis is nonparametric in the sense that it holds for any

underlying sampling distribution but the actual optimal procedures

depend on the specified distribution.
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ON PARTITIONING A SAMPLE WITH BINARY-TYPE QUESTIONS
IN LIEU OF COLLECTING OBSERVATIONS#*

by
Kenneth J. Arrow,** Leon Pesotchinsky,®##
and Milton Sobel%##

1. Introduction

This problem originated in some research on the optimal design
of organizations, though it clearly has many other applications. Consider
the simplest problem of resource allocation, in which there is one input
to be allocated among many possible users. All users produce the same
one product, and each is characterized by output-input ratio independent
of the scale of operations. Optimal resource allocation would require allo-
cating the entire input to the user with the highest output-input ratio.

Suppose there are a large number of users. In the first instance,
each user knows his or her own ratio only, while the center (the agent
performing the allocation) does not. The center must acquire the
information by asking questions of the users. However, in the spirit
of information theory, the more exact the required answer the more

costly its transfer is. We can reduce the problem to that of asking

.This work was supported in part by Office of Naval Research Grant
ONR-NOO1L4-T9-C-0685 and in part by National Science Foundation Grant
MSC78-01881. This paper started with a series of discussions between
one of the present authors, Professor Kenneth Arrow of Stanford Univer-
sity and Professor Leonid Hurwicz of the University of Minnesota and the
original applications considered were in the field of economics. Thanks
are due to Professor Morris Newman of UCSB for suggesting the method of
proof of Theorem 3.1. We also wish to thank Ms. Barbara Havens for
carrying out some of the computations.
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dichotomous questions. Since the center does not know the individual
values of the output-input ratio, it may treat them as members of a
random sample from a distribution, In this paper, we assume the distri-
bution known.

There are many other situations in which the choice of the
largest element from a sample mey reasonably be made by binary-type
questions. For instance the data to be collected has a confidential
or semi-confidential nature and people may be reluctant to furnish
information about their age or salary or even about the amount of money
presently in their wallet. On the other hand, people may be willing
to state that the quantity X in question (i.e., X equals their age)
is greater than 30 and, if necessary, later tell you that it is under
45, etc. The problem (or goal) is to continue such questions with

the n people (or a subset of them) in order to find the one whose

X~characteristic is the most extreme in a given direction (say, the
largest). A more general goal would be to find the t 1largest (smallest)
of n with or without respect to order. For the latter goal, the case
t=n-1 (or n) would correspond to a complete ordering of the people
in the sample and this is an important special case. Clearly, the case

t =1 reduces to the former goal.

The criterion to be used has to be specified exactly in order

to either find the optimal procedure or decide whether a glven procedure
is optimal. The main criterion of interest in this paper is the expected

number of questions that has to be asked. We are also interested in
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criteria such as "maximizing the probability of terminating in r
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3 f - steps.” For most of our goals, the latter criterion with r =1 and

;W the main criterion (expection) give results that are in "close proximity"

from the point of view of applications.

Several things should be noted:

(1) We are not allowing paired comparisons here; we do compare

f all x's with a single specified constant and call this
f“ {' one question.

?7 (2) We assume in our illustrations that the X-characteristics
s 4

* ]

5

of the n people, xl,xa,...xn, are independent and iden-~

.

tically distributed (iid) (or at least exchangeable) with

cdf F(x), which is known to us (the case of unknown F

will be considered by the authors in a separate publication).
(3) We assume that the observations (x's) are continuous so
RN ) that with probability one we can assert that no two are
exactly equal. We recognize that this may not be strictly

true in the applications noted above and that practical

modifications will be necessary to handle ties (e.g., two
people may both be 45 years old and the data available to
us does not give ages finer than to the nearest year).

However, the theoretical analysis will not take this into

PO ———
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account; it simply uses the fact that with probability one
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under very weak restrictions (independence being more than
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sufficient) no two x's will be exactly equal.
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Remark: Moreover, there will usually be a practical lower
bound to the fineness of the data, say ¢, that encourages ties for
large sample sizes. If we expect ties in the sample we modify our
; “ procedure by not allowing in our questions (which are of the form:

: "Is your X larger than c") two constants within € of each other.
Then it is easy to show that the results we have below on expectation

are upper bounds for this new modified procedure, even if the proba-

b bility of ties is not small.
o Our solutions (for the case of known cdf F(x)) are strongly t

dependent on the given cdf F(x) (i.e., when the true cdf F(x) is
] £
. completely specified). However, the solutions are nonparametric in ;
- the sense that the instructions and tables needed to carry out the

procedures are the same regardless of the particular assumed F(x).

Thus our tables would specify a value of p and the procedure (at l
the first step) might be to solve F(c) = p. Another equivalent way
of stating this is that the problem has been reduced to that of the
uniform (0,1) distribution.

The results obtained are quite striking. Thus in the basic

L oy
we -
e ————

illustration (t = 1) the minimal expected number of questions required

is less than 2 1/2, namely 2.42778. The result above holds for any

e ey PN

starting sample size n and for any known cdf F(x). The procedure

that maximizes the probability of terminating on the very next step

.

(the second criterion with r = 1) has a result not far removed, namely

l
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the corresponding expected number of questions required is 2.kL1hlk,
The optimal procedure in the latter sense is simpler because it does
not require the use of any table of optimal p(or c)-values.

Of course, there could be some other ways of asking group questions,
e.g., rather than asking a binary type question leading to a yes or no
answer (such as "raise your hand if your X 4is larger than c¢ and
do not raise otherwise"), we could allow questions with 3 possible

ansvers (such as "raise your right hand (or red flag) if X > Chs

your left hand (or blue flag) if X g c,, and no hend (fleg) otherwise").

Then with c1 < c2 we can partition the sample with one question into

at most 3 disjoint sets: X ¢ ¢y <Xg Cys X > Cye In the same
way questions with ko(> 3) possible answers may be allowed and, of

course, we should make every attempt to use such questions if we wish to

attain an optimal solution. (The reason for this is that for k_ > k

2>k 22

an optimal procedure with "ka-way" questions generally gives better
results than an optimal procedure with "kl-way" questions.) In the

i1llustrations below only binary type questions are allowed; however,
the same approach could be implemented in the cases of more complicated
"sempling procedures” (we refer to the type of question allowed as a
part of our "sampling procedure").

We regard our problem as the partial or complete ordering of
a sample without the necessity of knowing any particular values of the

observations in the sample.
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In Section 2 we consider the problem of selecting without
order the t largest of n observations in a random sample; the same
problem with ordering is discussed at the end of Section 3. The main
part of Section 3 deals with the problem of a complete ordering of the

sample.

2. Selecting Without Order the t Largest

2.1 Preliminaries

Consider the problem of selecting without order the t largest
observations in a sample (say, of people) of size n when the above
type of sampling is available to us, i.e., we can ask any subset of
the n people to each raise his hand if (and only if) his X > e,
where c¢ 1is at our disposal to select. We terminate when (and only
when) we definitely have the t largest separated from all the others.
(The modifications required in the case of ties will be evident in the
light of a remark made in Section 1 sbove.)

It should be understood that if we obtain a subset of size k
which is less than t as a result of the first question then we continue
looking for t - k from the batch of size n -~ k; if kX > ¢t +then we
continue looking for t from the reduced batch of size k.

Let LAY 3 denote the probability that J people out of i
9

will respond affirmatively to a single question. In fact these LA 3"
’

values can in the most general set-up depend on the entire history of the
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procedure. In other words, if "{w} denotes the space of trajectories

of a random process associated with our procedure, then after w

A

questions have been asked (or at a moment w) L5 J(w) =7 W)
. L]

i,3 (ws 8

>0 for

A

for w, = i. However, using the assumption that =« i,

i,J
it can be shown in a manner completely analogous to that given in a

book by Ross [19T0, Ch. 6] that if the X's are independent (or at

least exchangeable), then the optimal solution for our principal criterion
(minimum expected number of questions) is obtained by a stationary

Markov decision procedure, i.e., with transition probabilities ,

i,

which do not depend on w.
As a result of the above we can use the Markovian property to

write for n 2 2 the basic equation for our procedure

n t-1
(2.1) Pn,t(r) = J=§+l1rn’JPJ,t(r ~1) + JZO “n,JPn-J,t-J(r -1) ,

where Pn t(r) denotes the probability of terminating in at most r
L]

steps under a scheme described above if we start with n and our goal
is to find the top t wunordered. The boundary condition is simply that

for all t we should have Pt (r) equal to zero for r 21 and

st

equal to one for r = 0. If we multiply both sides of (2.1) by r - 1

and sum from r =1 to o (letting u(t)

o denote the expected number

of steps or questions required for our procedure with n and ¢t

defined in the present goal), then we easily obtain
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n-1 t-1
: 1+ "n Jugt) + z 1'n juitjj) -
(2.2) () | __gstnd 217 :
3 : Mn 1-mw ,-=
3 n,0 n,n
- A sufficient condition for the expected time of absorption
3 - > )
% (which is equivalent to the expected number of questions needed in
:g; our problems) to be finite and hence for the both sides of (2.2) to
*
- be finite is that the LA 3 be bounded away from zero; more precisely
L ]
o that =, ,>8 forall i and §j (Jgt<ign) for some &> 0. |
- 1] ‘
:-i (This sufficient condition can be shown to hold for our optimal procedure.) o
An alternative way to show that uit) are all finite for the case .
of the optimal procedure is to come up with some other (i.e., any) .
procedure for which the expected times of absoption are finite for all .
n. In fact, it will be shown that an optimal procedure in the sense
{ of our second criterion with r = 1 yields finite values for all )
(t) :
My .

Assuming now that the transition probabilities (i.e., the = ) o

n,J

are defined by a finite number v of parameters pl(n),...,pv(n),

w .

and that uis) have been found for all s <t and i ¢ n -1, equation "

; (2.2) can be viewed as a recurrence relation from which the ﬂn’J E:

3 ; and the optimal pl(n),...,pv(n) can be found via minimization of i'
' vﬁt). That defines an optimal procedure in the sense of our basic .

| R
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3
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. }_ criterion (minimizing the expectation). For our second criterion with

r> 2 (i.e., maximization of Pn t(r) for a specific r), we can

treat equation (2.1) in an analogous manner assuming that the P, (t)

i,s

Pt s

have been found for all i gn,sg t and 1t <r-1. For r=1

the solution in the latter case is obtained simply by maximization

s

of the single coefficient =

n,t’
In the important special case where XyseeesX, ~are obtained
from continuous iid random variables, the transition probabilities
: are binomial, namely = = (n)pJ(l - P )n-J where p_ =1 - F(c )
n,J ? n,J J%n n ’ n n

and cn is a value which defines the initiasl question for the sample

size n. Therefore, in this setting the optimal solution is given by

()

a sequence of values pn

s> T+ l, 1 < t. Naturally, since the

search for the top t unordered is equivalent to that for the bottom

i n - t unordered, we can assume that n > 2t. For the second criterion

~ _ Dy t n-t
} with r -1 we obtain B, values maximizing LA (t)pn(l - pn) ;
1 it is easily shown that the sequence in = t/n is optimal in the sense

! l of this criterion. We can see now that T4 $ tte_t/t! as n + ®
. 1 ]

1 1 ‘ and hence in the associated Markov chain the absorption time
’ ~(t) -1 t,.t -(t) _ = =(t)
o' g (Um “n,t) = tle’'/t” end hence u ~' = 1limu °' satisfies

the same inequality. Thus for each t the quantity t!(e/t)t is
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an upper bound on the optimal uét) for any n; this upper bound

holds both for optimality of the second criterion with r =1 as
well as for that of the basic criterion.

Now we can use (2.2) to derive some results for the optimal

procedure with respect to the basic criterion.

2.2 The Optimal Procedure for the Basic Criterion

Theorem 2.1: Let .{pét)} be optimal in the sense of our basic
(t)

criterion and "n denotes the corresponding expectations. Then

(1) uét) increases with n (for any fixed t) and

IJr(lt) < uif) < 1~1‘i1;) < /ouT 1712t

(2) t/n g Pit) <(t+1)/(n+1) for t < (n+1)/2 and

(t) _ g

lim np, t

1 nand

exists (t < et <t +1).

Proof: For simplicity let us first take t =1 and write

p instead of p (or pﬁt)), q instead of 1 -p and M instead

of vit). Then (2.2) can be written as




- |

g oo

PR 2 e

fad e it b i 5 o Gdiiites ady bt - o
{ B it
e o s Wik i e e €Y et s c e e —a—

-11-

which defines an analytic function of p om (0,1), so that for

the optimal p (i.e., p = p(l)), we have (dun(P))/dP = 0 and it
gives us
(2.4) T (Dp 0 -

J=2
n-1
= n(qn-l _ pn-l)(1 + Z ( )pJ n- J )(1 _ pn - qn)-l
=29

Bl _ pf" l)u (®) = n(® - "

= n(q n

Using the identity J -np =ng ~ (n - J) in the left-hand side of

(2.4) we then rewrite (2.4) in the form

(2.5) { ", - 22<“' P - )

n-1 n-1
Ju

=n(q ~ -p n

For any p and the optimal LI from (2.3) it is clear that

(2.6) un_l (.1 + Z (n l)pJ n-l- J )(1 - pn—l - qn-l)-l
J=2

Hence we obtain from (2.3), (2.5) and (2.6)

(2.7) u(pa® - pM g u (1 -p" - o™ —w (-,
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which yields

‘ (2.8) o

)
nA
=

Now, in the first line of (2.l4) we expand n - np as two
separate terms and use (2.3) on the second sum. Equating this to the

third term in (2.4) we obtain, for any p,. that satisfies (dun(p))/dp =0,

_ S n-1, 3-1 n-j a
=l-owpt 322(J-l)pr i My o

(2.9)  lu(p) - w11 - 5™

By virtue of (2.8) the right side of (2.9) is an increasing function

of P and hence by (2.9) un(pr) is also, i.e., if there are two {
solutions P;P, with P, < P, then un(pl) < un(p2)' Since “n(p) I
is an analytic funetion in (0,1) and tends to infinity as p » 1 from
: the left and also as p + 0 from the right, there cannot be two such l
‘ p-values that are both local minima. Hence the minimum must be unique "
; and there is no analytical maxima in (0,1).
3 i The next task is to locate this unique minimum. From the first l_‘
A and third terms in (2.1)
! ,
n-1 ;
n «]l n-1- - - '
( I Q- np)p? 1?1, - ny ()(a”1 - g1
du P) £ 3 n
(2.10) = 72

1-p° . gh
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We wish to show that for every n the derivative is negative at

p= 1/n and positive at p = 2/(n + 1). Firstly, for p=1/n we

- take into account that M (p) 2 M 2w, >u,=2 for 3> 2 (the

fact that u, = 2 can easily be derived either directly or from the
-.j i associated Markov chain), We first separate the term with j} = 2

in the sum in the numerator of (2.10) and then in the remaining terms

expand J - np =3 -~ 1 as two separate terms, thus obtaining for

;‘ j . n > 2 that the numerator of (2.10) for p = 1/n does not exceed
- -1,_Jj-1 n- - -1 -1
: (n-l)q°3=nun{ 2(311)‘11]” Z(J)pjnJ Q" +pn}
] =(-1"3-us2<o ,
j } so that
5 au_(p)
{ ) —{%—— <0 .
’ p [p=1/n

P——

In the same way that (2.9) has been derived from (2.4), we can

use (2.10) and some algebra to show that

dun(p)

ap

(2.11)

= a{p(1 - p* - ¥ Ml () - u,_,(p)]

c(1-q"h pn'llun_l(p) ~u 1.

oy N e pey
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We can see now from (2.11) that if u (p) 2 un_l(p), then
(dun(p))/dp > 0 and with the continuity of un(p) in p this

implies that p %)

< -
N p if un(p) un_l(p) > 0. It now remains

only to show that the latter inequality holds for p = 2/(n + 1).

But using (2.2) and the relation 7 , , =7 (0 -k)/ng we can

show that

(2.12) (1 -p" - M@ - 2" - Dl () - u_,(p)]
n=2 n n
n-1 n-1 n-l n-1 (1-p -qg)(n-X%)
= - + n - - -
Pq ap Ez (1 - P q m ]
+ npn-lqun_l(l - pn-l _ qn-l)

and the terms in the sum in the right-hand side of (2.12) are non-
negative if k > 3 and p =2/(n +1). Since for k > 3 we have

M > Wy = 2, the right-hand side in (2.12) is not smaller than

n-1 1

n-
-Pq - aqp

1

- o P s (-1 ™D - P - D)

1 1

= -pa®? - " + 2pg™ Z(mp - 1)

1 n-1

and with p = 2/(n + 1) the latter expression equals pqp. - qp

This implies that

1, (1) 2
(2.13) n=Ph o+ 1

-1 -1 -1
+2{(1 -p® - q® = npd" )1 - P - &)

> 0.
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and the equality holds only for n = 2. The inequality (2.13)

enables us to take limits in (2.3) in accordance with two subse-

quences converging respectively to lim npr(ll) and 1im npr(ll)

(using the Poisson approximation to the binomial distribution).
m 1 The Poisson approximation and the monotonicity of ;&(ll) imply
= “
that 6, = lim np(l) = 1im np(l) =g = 8, (say). A new equation

| n n 1

can now be written instead of (2.3), namely

¥~ ’ -0,  (0)} -6
x ‘_ (2.1%) uil) = {1 + e 1 122—1'!—;1:&1)} (1 -e 1)-1

which is more convenient for the numerical search for el. This

completes the proof for t = 1.

{
3 “4 I For t > 1 the proof of Theorem 2.1 follows essentially in
‘ } the same manner as above and hence we will outline the result below.

Firstly, two identities can be derived from (2.2) in the same

J’ ) manner as (2.4) and (2.10) are derived from (2.3), namely

1 o) n -1, (4) (t) n-1
- (2.15) —Fg— = n{p(l - p" - @)l (B) -y (P -0 )

t-l (t-k)  (t-k)

. pn-l[u(t)(P) - “x(ztl).] - kzlnn_l’k(un_k - “n-k—l)}

- ' n-1

and ,:.
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()
au_ " '(p) _afn-2 -
(2.16) —2— = nfa(@ - ¢ - »")) l{kztwn_l’k(u,ﬁﬁ )
- ) - W L M) e

. (1 - pn--l)}

(t) (

Since in the point P, we have (duz)(p))/dp = 0, we can see from

(2.15) and the fact that uﬁfg < uif;(p) for all p that

t-1
1 Pl - 55D

- W - WM ea - @« e - )

e T o e R U RNy

[u(t)

n-1
N )

- uﬁf}](l -q

A

and under the inductional assumption that u(v) > uiﬁi for all

r
(t) (t)
r<n and v<t (2.17) implies that W, = > W _y- Then ve can
(3) (3)
prove that the differences uk+j - uk+J-l are increasing with J
which i (t) (t-1)
ch in turn implies that Meva = Miolta increases with a(a > 1)

(t) (t-1) (a) (a)

because Hiea = Wiol+g = Hetg = Miol4a®
For any point p in which (dun(t)(p))/dp = 0 we can write

now from (2.15) that




jl '
E € o
Flid -
a8
- (t) (¢) _ . (¢) (t)y1 - p1 _ gt
(2.18) w o p) -y o= (e Z(p) - w7y Ll
t-1
. (t-k) (t-1)
: kzl"n-l RN W)
+
1 - qn-l
|
f:- and from (2.16) that
31 .
S SR el
2 % t) _ -1
\{ (2.19) wo(p) - = - =
= ;
) (t-1) (t-1)y2 = p"* - 2
“ ol @) - ) a1
l-p
| -l ((8) _ (£ -1))
_ I m Jk P+l T Mk
: + 1_‘_’_t
] } ) 1- pn-l
,‘ i
l ) Suppose now that a function uiv)(p) decreases in the interval

(v)

M ,1) and that

(O,piv)) and increases in the interval (p

e e

v/r < piv) <(v+1)/(r+1) forall ~gt,rgn-l and v< (1 +r)o.

Then the right-hand side in (2.18) decreases in the interval

(t)
n-=1

(o, ;Ei) (because

e L o
TN R A R e ma e o

(p) decreases by virtue of the inductional

(t-k) _  (t-k)

n-k un-l-k decreases with k due to the statement

assumption and




above after (2.17)). At the same time, the right-hand side in

(2.19) increases in the interval (p(t -1)

,1) and with the help

of the arguments following (2.9) we can see that there cannot be

(t)

(to the right of pile))

two such p-values to the left of Py

that are both local minima. But by virtue of the inductional

assumption

pr(:ll) <te

=

(t)
n-1 < pn-l

which implies that if there is a local minimum in the interval

(t-—l)

[p . (t)] then this minimum is unique for the function u( )(P)

in (0,1). From (2.15) we obtain now that

aw{*)(p)
a _ (%)
P P=Pa l
= n{p(1 - p°- qn)}'l{(ur(lt)(p) - u(t))(l e ‘
t=1 ‘
(t-k) _ ,(t-k)
- k_.Z_lwn-l,k (un-k - My k—li}

-1 "h-1,k

t-1
2 ngp(1-p" - ") () - (t))( ) >0 , l
k=1




(t) 1). In a similar

so that uit)(p) increases in the interval (pn 1

nanner we can show that

duit)(p)

ap | (t-1) <°
p Pn_l

and hence there is a unique minimum of ugt)(p), and that it lies

in the interval (p(t-l) (t)).

n-1 ,pn_1 then for t 2 2 we can show that

(duit)(P))/dp is not positive in the point p of the intersection

t

n—l(p) and (duét)(p))/dp is positive in the

of ugt)(p) and p

point p of intersection of pit)(p) and “ﬁtzl)(P)' so that

p‘<pit) < 5. The final step of the proof includes the direct veri-

fication of the fact that p > t/n and ;‘é (t + 1)/(n + 1) (which

we omit) and hence

(2.20) t/n g

R CRES

It is easy to show that the equality in (2.20) holds only
if n = 2t. Indeed, if n = 2t we obtain from (2.2) (taking into

(t-k) _

account that y, ' = “;:Zk) that

e e




3 | 1+ J weae(Top pex ¥ "otk
’ )y = k=1
p°° - g

: f and the monotonicity of ué:i in k implies that p = 1/2 yields

- 4 the minimum for uét)(p).

The proof of the existence of

< (t) _
9 limnp " =6, , tgo <t+1l , l

is similar to that in the case t = 1.

2.3 Approximation to the Optimal Procedure.

The above results enable us to prove that the proximity of

t/n and pﬁt)

implies the same for pit) and uit); the latter

refers to the second criterion discussed in Section 2.1 above.

e e 3 AP Y
— e X

Theorem 2.2: There exists an ¢ > O

such that for all
and t < (n + 1)/2

;ét) - ur(xt) < e

We can write that

;r(it) - uf,t) = {;f‘t) - \T(nt)}'f {'\Tr(lt) - u,(lt)}
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—t)

where u,

nA

is defined by (2.2) with optimal uiu)» ugt,ssgn-~1,

and p = t/n. The first term in (2.22) is an "improvement" introduced

to the optimal procedure in the sense of the second criterion with

r =1 by substituting ;éu) for the smaller values pgu) and the
second term is an "improvement" to ;ﬁt) due to the optimal choice

of p.
Let us suppose now that the statement of the theorem holds

for a1l u gt - 1. Then we get from (2.21) (taking into account

that P;t = 1/2 and denoting sup {;iu) - uéu)} by
2u-l<s;u§t-1
st-l) that
“(t) (t) _ =(t) —t)
(2.23) Mpe! = Mpp' = Mol = oo

t-1 .
Faio e )

- +
Yotk "t+k)("2t,t+k Tog -k

=-l§l'—
2t 2t
l1-p -4
2t -2t
(%2
<€ - € P —————
= "t-1 t-1 1 - 2-2t+l

The inequality above serves as the basis for the induetion.
If we suppose now that the statement of the theorem holds for all

us<t and sgn-1 with ¢ = €g1? then from (2.2) we can obtain

that

o ilees B




GH&*a -yt

S8

(2.24) <€ - .
e YL T

In order to estimate the second term in (2.22) we can derive (2.16)

(t))

that in the interval (t/n,pn

dux(lt ) (p) [ nthn'l

dp I 1-p° -

(2.25)

?

where C, is a constant for a fixed t and C, < C,t, where C,

does not depend on t and C0 < 1.

From (2.24) and (2.25) we can see now (using the inequality

a{p)
dp

max

Tt (+)
o<P<Py

;t(lt)-u(t) <

n l(pr(lt) - L

n

n, t,\t t\n-t t\n-t
(t) .- e(t)(;) (1 - Hﬁ - Cot(l - K)

v s 1- @ -a-h

~(t)
My - W
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| if
n,t\t
: B> e
3 !_ or if
E
o i |
S (2.27) e>a =cyon ETERIN co(z)’lntt"“l .

Since at >0 as t*+® the € can always be chosen to

£ f satisfy the statement of the theorem.

The calculations presented in the Table 1 show that for

t £T we have € < €

. S 0.014 end since ag < 0.014 we have

t

0.01k.

o™
[}
WA

&
From Theorem 2.2 and Table 1 we can see that from a practical point

of view the optimal procedure for the second criterion (with r = 1)

SR N G ST

is nearly optimal in the sense of the first criterion. Clearly, the

! so-called t/n-procedure is more convenient since it does not require

(t)y
n

ﬁ specific tables for determining the p
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Selecting Without Order the t Largest
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Table 1

n e

2 | W ) .
2 .5 2.0 2.0 0
. Sh627 2.16507 2.16667 .00160
b +26557 2.23783 2.24138 .00355

10 1111 2.55625 2.56524% .

50 .022681. 2.h1389 2.42676 .01287
- 1.14852» 2.42778 2. 44104 .01366
s .5 2.38004 2.38095 .00091
5 10582 2,47956 2.48139 .00183
6 34178 2.535757 2.54042 .00285

10 «20969 2.63849 2,6u418 +00569

50 043518 2.73979 2.74998 .01019
- 2,17566 2.76250 2.7TT329 .01079
6 5 2.59500 2.59706 .00206
7 43187 2.66373 2.66642 00269
8 .38017 2,70961 2.71295 L0053k

10 «30683 2.76729 2.7T7175 - 00Ul6

50 06526 2.91523 2.92435 .00912
- 3.18865 2.94 2.95512 .00926
8 5 2.74003 2.Tu307 0030k

10 40350 2.82890 2.83286 .00496

15 21236 2.9247TT 2.93045 .00568

50 ~08324 3.035050 3.05013 .00863
- k.19669 5.06868 3.07700 .00832

10 5 2.84750 2.85131 .00%81

1n 45603 2. 2.89246 00417

12 41919 2.91945 2.92397 ~00452

15 «35TLU8 2.98061 2.98601 .00540

50 .10517 5.11403 3.122k0 .00857
- 5.20228 3.15957 3.16726 .00769

12 .5 2.95189 2.9%634 .O0lLS

1s 46268 2.96538 2.97011 00473

b1 L0548 2.99198 2.99697 .00499

20 -30388 5.08103 3.08726 00623

50 123507 3.17819 3.18641 »,00822
- 6.20649 3.23100 3.23823 .00T23

b1 .5 3.0083 3.00579 .00lg6

15 46751 3.02909 3.03427 00518

20 «35294 3.11390 3.12003 .00613

350 «235691 3.18262 5.18984 .00722

50 « 14295 3.229%6 3.23751 .00815
- 7T.20982 3.268944 3.2963) .00687

. .o (t) (¢)
For n the entry in the Py column represents lim mp, e
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g - %, l. 3. The Complete Ordering of a Sample é
3 }' Let us denote by Gn the expected number of required steps.

(t)

Then in the same manner as above for un we can write

B Bl roaer

A 1+ I (pid (6, + 6 )

X _ r=1

- . (3.1) G (p) = — .

- ] l-p -9

'y . In order to agree on one definite procedure (out of many equivalent

procedures) after the first question has been asked, it is understood

'g\. that we shall first order the r subjects in one of the two subgroups

formed and then order the remaining n - r subjects. Thus the
} minimization of (3.1) will provide the optimal results in the sense
! of expectation.

We can show algebraically that for n < 5 the optimal value

of P, is 1/2. For many values of n 2 6 it is no longer true;
however, the procedure with P, = 1/2 for all n serves in this case

as an approximation to the optimal procedure, just like the "t/n-
procedure” from Section 2 does in the case of selecting without

order the t largest. Unlike the previous problem we have not obtained

exact analytic results on the limiting approach of the "1/2-procedure"

to the optimal procedure, but we do have considerable empirical infor-

i
- ol s a0 cu e . 4 o

N . :
T .

mation about this which we will describe later. What we do have is an i

explicit upper bound for n 2 6 for the optimal procedure which is

R———————— e e i LTl a et -



based on the 1/2-procedure.

in Table 2 indicate
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Furthermore, the numerical results

that the difference between the Gn-results for

p = 1/2 (denoted by Gn) and the optimal G -value is extremely

small.
Theorem 3.1:
(3.2) x
where 0 g a < 1/2
Proof: From
n~
(3-3) 2°¢

where we define &o

Multiplying through

For the 1/2-procedure we have the exact result

n —
rgz(-l)r(?)(r - -2t - nz;el * %

(n = 2,3,...).

(3.1) with p = 1/2 we have

n - - -~

n n

2" +27) (LG -2(G, +nG,) ,
=0 F T (o] 1

G1 =1 in order for (3.3) to hold for

n=20, 1.

by zn/n!, we let

- G
" n .n
¥(z) = Z;!-z
n=0
and obtain
2 b +
(3.4) y(2z) = e°* + 2y(z)e® -2 ] E_;len

n=0

= 2% 4 2y(z)e® - 2(z + 1)e® .

2]

3

.-

A | Beanagic) ) e e
. w . L

-

[ ]
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Table 2

Complete Ordering

ﬁ'l'an
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Table 2

Complete Ordering (Continued)

n Optimal Optimal $-procedure Asymptotic Difference
n n

- P ¢, an _ z-1 Lz "1-6
. 2‘1’ goooo gg.;gézi gs'.ssm 375.56170 00805
- 62 -50000 8843877 88,4721 88.54709 ~008s2
h 63 «50000 89.88133 ag.aegﬁ 89.88978 - 00845
7 64 55577 91.52390 91.33 91.532k9 .00859
1 65 .ﬂm 92.w 9207753 92077518 .m
76 61995 108.63462 108,64495 108.64482 .01020
e 1 d 6290% 110.07718 110.08762 110.08751 .01053
R 78 63867 111.51974 111.53029 111.53021 01087
) 79 6672 112.96231 112.97297 112.97291 .01060
i 80 ;| .65261 114 . hOMST7 11h,.8156h 11k. 41561 01074
& 65673 115.84743 115.856s1 114.85830 .01087
82 65964 117.28999 117.30098 117.30100 .01100
8s ‘1 .66176 118.73255 118,74365 118.74369 L0114
90 . 672082 128.830M7 1268.04238 128.84255 .01208

'
g
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Multiplying (3.4) by e-Zz’ we let
F(z) = e 2y(z) = ] n-ﬂzn
n=0
and obtain
(3.5) F(2z) = 2F(z) + 1 - 2(z + 1)e” % ,
® A (2z)° o A g0 o n
(3.6} ) -2;7-—-- 2§ ;! =1+2 J ()" 12—57115- )
n=0 n=0 n=0

Equating coefficients, we obtain for n 22

(3.7) A= L

where Ao and Al will be found later. Hence it follows that

T AB B b za ° 2" 8% n
3.8) (z) = )} =5z - = =) (a_ .
( v BEOB! i azo"’ nEOn r'z-'o rr

Using (3.7) and the definition of y(z), we obtain
. n o
(3.9) 6 = 1Zo(rmr .
From (3.9) for n=0 and 1 we find that G. = A =] and

0 0

(3.10) 61-1-A0+A1=1+A1~A1=o .

v T A YD Y % % 1, 1y o




Hence we obtain the final result from (3.7), (3.9) and (3.10)

(3.11) G =1+ Z ( 1)"(“)—"1'—l
r=2 of~t . 1

(1)()_L-.i_
r£2 1-2TH

(In (3.11) we used the identity

| n

I (-DTC)r - 1) =1.)
r=2

= Asymptotic evaluation of G,-
From (3.11) we also obtain for AGh = én - &n_l for n»> 2

~ n r n-2
(32) aq = ] {Ale=2) @) (@l ] (A1) e

r=2 1 - 21-r r r 520 1 - ( )s+1 s+l

- (@-1) T (1) A D (B2, )
s=0 2

(n - 1)[1(1)n-2 + %(%)n—2 + ...]

(-1 ] 2(-Lip
a=1 2% 2

if we set Gi = 1 then (3.12) also holds for n = 2.

From (3.12), using the definition G, = 1, ve obtain

A
i SRR ... L. N .. . SRR ...
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(3.13) G -1= g (1 -1)Q2 - )1'2

n a’l 2 i=2

Letting 6 = 1 - (1/2®) and j = i - 1, we can write this

for n;? as

n-=1 ® n
(3.14) Z e ) 11--69 - ne"'ll
o"O 2% J=0 a=0

We nov use the Euler-MacLaurin sum formula for (3.14). For the anal-
ogous integral I, using x for o and letting y = 1 ~ (1/2)%, so

that dx = dy/[{(1 - y)tn2], we obtain

Gy TT{ef- - M- L

. !11+y+12+...+yn'1-nyn-ldy
’.n2 l-y%

L Maryeznde v a1y Py =250
(0]

The two correction terms for the Euler-MacLaurin sum formuia yield
1/2 and 0; using the same analysis as in (3.15) it is easy to show
that the remainder term is bounded by 1/2. Hence the asymptotic

result for E}n is

(3.16) én = _ 1% 1.4i269n-1
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vhere the adjusted constant is based on empirical results. (For

n = 50 this gives 71.1345 and the exact result for GSO is T1.1342,

an error of less than 1/200 of 1%. The optimal result for n = 50

is 71.1280, an error in Gn of about 1/100 of 1%.)

4 In this problem the best we can do is to point out that we

;i need a minimum of at least n - 1 questions to separate all the n
ii observations and (3.16) shows that for "1/2-procedure" on the average
;% we need only‘about L4% more than this minimum.

]fi It should be mentioned here that from a computational point of
view the search for the optimal solution in our last setting represents

a significant problem. The problem is that Gn as a function of n

Lol

is so closely approximated by a linear function of n, and that for

tai it

the fixed n, Gn(p) is almost constant so that the search for p

which yields the minimum to Gn(p) is quite difficult. Thus, for

£

n 2 10 the variation of p in the interval [.5,.7] does not change

o

the first two decimals in Gn(p)- However, the difference

=

n(ll,n2).1 -1« Gn (which show up in the 3d decimal) tend to grow very

—mﬂWF=:l*v

slowly with n so that the correction term, namely the constant 1

» in G g n(gn2)"t - 1, should actually be larger than one, say of the

=

form 1 + Bn vhere Bn is a very slowly increasing function of n.

From Table 2 we empirically observe a cyclic pattern for the optimal

p-value which ought to be described. The optimal p-value is always

B

between .5 and a constant that appears to be close to n2 = ,693... .

PP R

v )
e
: oy
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For 2<¢ng 5 the optimal p is .5; for 6 < n<9 it increases;

23 it increases; for

HA

for 10 ¢ n g 15 it is again .5; for 16 < n
2h ¢ ng 31 it is again .5; for 32 ¢ n g 48 it increases; for
b9 ¢ n ¢ 63 1t is again ..5 and it increases for n > 64. For

large r we conjecture that the optimal p will be 1/2 for

3. ot-2 <ng 2¥ =1 and that it will increase between 1/2 and

some constant close to &n2 for 2 <n< 3. 2™l and that it will

follow this type of cyclic pattern indefinitely. Furthermore, we

conjecture that the small variation in the optimal Gh as p varies

from .5 to .7 will persist for large values of n, so that the

1/2-procedure will always give an answer which is equal to the optimsl

Gn-value to 2 or 3 decimal places.

It is interesting to mention here that the natural generalization
for the problem of complete ordering of the second optimality criterion
from the selection problem (namely, maximizing the probability of a

complete ordering in n - 1 steps) leads for n 2 2 to the equation

n=1 n-2

(3.17) ph(p) ® Z 1'nkPkPn-k = 2 1'nkpkpn-k M (“nl * "n,n-l)Pn-l *
k=1 k=2

where Pk denotes the probability of the complete ordering of a sample

of size k in k -1 steps and the LR binomial probabilities:
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L (E)pk(l - p)“‘k. For n <6 the optimal p (which yields
the maximum for Pn(p)) is 1/2; in the same way as above we can

consider a "1/2-procedure" and denote by Pn the corresponding
probabilities and by Pn the maximal values over p of Pn(p)'
It is easy to show that (3.17) implies for n > 2 the inequalities
1l,2,n-2 ~ 1l,3\,n-2
(3.18) 5(3) PSP ) .
For the problem of the selection of the t 1largest with

ordering out of n, we can easily write the equation for the

expectation of the number of questions:

-1
n (%)

™k 'k

t
(t-k)
1+ Jn._(G +6 )Y+ )

& nk'k n-k L
6{*) (p) = —E21 kSt

n n
1-p -aq

(3.19)

where Gk denotes the minimal expectation for the problem of

(t) _ (t) .
complete ordering, G, = m%n Gn (p), and 7 &re binomial
probabilities as before.

It is easy to see that

(3.20) G, < o{t) ¢ G, + ,,r(lt)

where the right-hand side corresponds to the expected total number

of steps in the procedure "u/G" in which we first select the t
(t)

is of order t and Mo

largest and then order them. Since Gt




is of the order /t or less, with large values of t the optimal

procedure for this problem of selection with ordering does not

give the qualitative improvement over the procedure "u/G"

described above. However, our conjecture is that the optimal

value of pét) for the selection with ordering is between t/2n

and t/n and that there exists a constant v such that

(t)
Gn - Gt g Vv for all n and t.
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